
extremecomputingtraining.anl.gov

Introduction to MPI-IO

Rob Latham
Research Software Developer, Argonne National Laboratory

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Plan of attack

Å Bottom-up tour of I/O interfaces

Å POSIX routines called by MPI-IO implementations

Å Parallel-NetCDF routines build on top of MPI-IO

Å Simple toy programs

Å Refining example several times throughout session

Å You can apply these lessons to your own code

ÅHeads up: going to do things the "hard way", then show "easier
way"

ÅDemonstrating some tools for understanding whatôs going on
POSIX

MPI-IO

PNETCDF HDF5
D
A
R
S
H
A
N

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Hands on materials

ÅCode for this é

Å Simple array I/O

Åé and other sections available on our gitlab site:

Å Game of Life I/O

Å Sparse Matrix I/O

Å Darshan

Å HDF5

Å IOR recipes

Å https://github.com/radix-io/hands-on

Å Work through examples when you can. Weôre going to do this ñcooking showò styleé

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Operating on Arrays

Å Arrays show up in many scientific applications

Å Matrix operations

Å Particle maps

Å Regions of space

Å Time series

Å Images

Å Probably your real application more complicated but an
array or two (or more) is in there somewhere, Iôd wager.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Graphic from J. Tannahill, LLNL

Typical simulations divide up the region being
simulated into chunks, then group those
chunks into similar amounts of work.

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) for
computation.

When speed of
writing is the priority,
blobs of data are
written from each
node into individual
files that must then
be post-processed
for analysis.

To prepare data for
analysis, a code
can write in a
canonical view by
processing the
data while it is in
memory, resulting
in a better
organized dataset.

or

Decomposition

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Scientific I/O constraints

Å Defensive I/O:

Å Guard against node failures or program errors with checkpointing

Å Application saves its own state

Å With a bit of extra effort, can be a portable, canonical representation

Å Ideally Independent of number of processes

Å Restarting:

Å Canonical representation aids restarting with a different number of processes

Å Data analysis

Å Who will consume this data?

Å Machine Learning

Å ñwhy is my [random small read] workload so slow?ò

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Defining a Checkpoint

Å Need enough to restart

Å Header information

Å Size of problem (e.g. matrix dimensions)

Å Description of environment (e.g. input parameters)

Å Program state

Å Should represent the global (canonical) view of the data

Å Ideally stored in a convenient container

Å Single ñthingò (file, object, keyval store...)

Å If all processes checkpoint at once, naturally a parallel, collective operation

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

POSIX I/O

ÅPOSIX is the IEEE Portable Operating System Interface for Computing

Environments

ÅñPOSIX defines a standard way for an application program to obtain basic

services from the operating systemò

ÅMechanism almost all serial applications use to perform I/O

ÅPOSIX was created when a single computer owned its own file system

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Deficiencies in serial interfaces

ÅTypical (serial) I/O calls seen in applications

ÅNo notion of other processors

ÅPrimitive (if any) data description methods

ÅTuning limited to open flags

ÅNo mechanism for data portability
ÅFortran not even portable between compilers

POSIX:

fd = open(òsome_file ó, O_WRONLY|O_CREAT,
 S_IRUSR|S_IWUSR);
ret = write(fd , w_data , nbytes);
ret = lseek (fd , 0, SEEK_SET);
ret = read(fd , r_data , nbytes);
ret = close(fd);

FORTRAN:

OPEN(10, FILE=ôsome_file õ, &
 STATUS=òreplaceó, &
 ACCESS=òdirectó, RECL=16);
WRITE(10, REC=2) 15324
CLOSE(10);

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

HANDS-ON: simple data descriptions (no I/O yet)

Å Consider an application that operates on a 2-d array of integers.

1. Write code declaring a 2-d array of integers

Å Probably want to allocate on heap, not stack

Å Later steps will be easier if you make it a single allocation

2. Define a data structure describing the experiment

Å E.g. C struct with row, column, iteration

Å Use whatever language you likeé

Å é but we can be most helpful if you use C (c.f. RobLôs python ñsolutionsò)

Å Source ñpolaris - setup - env.sh ò to load necessary modules

Å Could run this first example on laptop if you want: shouldnôt require any libraries

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

HANDS-ON: simple I/O

ÅWe havenôt talked about MPI-IO or I/O libraries, but we can still checkpoint.

Å Serial I/O, not parallel

Å Memory: 2-d array of data plus small header describing structure (see óutil.cô)

Å File: same as memory

ÅImplement ñwrite_dataò in posix.c

Å Will create file and fill in data

Å Prototype:

Å int write_data (char *filename)

Å Use system calls (open(), write(), close()) , not ñstdioò calls (fopen (), fwrite (), fclose ()) : will map
more closely to MPI-IO later

Å How will you know it worked?

Å We are going to repeatedly revise write_data () (and later read_data ()) with each exercise

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

RUNNING

ÅSubmit to the óATPESC2023ô queue (polaris)

ÅIôve provided a ósubmit-polaris.shô shell script
Å qsub - v "APPLICATION=posix,FILENAME=whatever" submit - polaris.sh

ÅIf you donôt give FILENAME, then ótestfileô used.

ÅWhich file system to use?
Å Tried to make scripts do right thing by default

Å Please donôt use the NFS-mounted home directory

Å Given scripts should already point you to the right parallel directory

ÅPolaris: /grand/ATPESC2023/ usr /$USER

Å Make a directory for your data
Å Polaris: mkdir Ƶp /grand/ATPESC2023/ usr /$USER/

Å Set sensible striping:
Å lfs setstripe Ƶstripe - count - 1 /grand/ATPESC2023/ usr /$USER/

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Solution fragments:

int write_data (char *filename)

{

 science data = {

 .row = YDIM,

 .col = XDIM,

 . iter = 1

 };

 int *array;

 int fd ;

 int ret=0;

 array = buffer_create (0, XDIM, YDIM);

 fd = open(filename, O_CREAT|O_WRONLY,

S_IRUSR|S_IWUSR);

 ret = write(fd , &data, sizeof (data));

 ret = write(fd , array, XDIM*YDIM* sizeof (int));

 ret = close(fd);

 return ret;

}

% od - td testfile
0000000 1 5 1 0
0000020 1 2 3 4
0000040

Reading a binary file: ñcatò wonôt work.
Could write a c program to read. Several
utilities available. I like óodô: (historically it
only did an ñoctal dumpò). The (t)ype
argument can select (d)ecimal

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

HANDS-ON: send-to-master

Å Parallel program, but serial I/O

1. Write_data () should take an MPI Communicator

2. Call MPI_Init() and MPI_Finalize()

3. Use MPI_Gather to collect all data onto rank 0:

Å Only rank 0 does I/O; writes header and all array
information

ÅWhatôs good about send-to-master? Whatôs bad?

0 1 2 3 4

File

5

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Solution fragments: MPI_Gather: collect all data on rank 0

MPI_Comm_rank(comm, &rank);

 MPI_Comm_size (comm, & nprocs);

 /* every process creates its own buffer */

 array = buffer_create (rank, XDIM, YDIM);

 /* and then sends it to rank 0 */

 int *buffer =

 malloc(XDIM*YDIM* nprocs * sizeof (int));

 MPI_CHECK(MPI_Gather (

 /* sender (buffer,count,type) tuple */

 array, XDIM*YDIM, MPI_INT,

 /* receiver tuple */

 buffer, XDIM*YDIM, MPI_INT,

 /* who gathers and across which context */

 0, comm));

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Solution fragments: writing from rank 0

if (rank == 0) {

/* looks like serial with more data */

é

/* writing (logically) global array, not

just our local piece of it */

 data.row = YDIM* nprocs ;

 data.col = XDIM;

 data.iter = 1;

 ret = write(fd , &data, sizeof (data));

 ret = write(fd , buffer,

 XDIM*YDIM* nprocs * sizeof (int));

 ret = close(fd);

 return ret;

}

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Other questions:

ÅLots of machines (your laptop; Polaris) represent integers as 32 bit little endian. What if you went
back in time and ran this code on BlueGene

Å Summit and ascent are powerpc64le

ÅWe wrote row-wise. What if you wanted to write a column of data?

ÅWhat impact would a header have on data layout? Are there other options?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

HANDS-ON: using Darshan

1. Find the darshan log for the last exercise

2. View the raw counters with ñdarshan-parserò

3. Generate a report

Å You might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2

Å Hint: you canôt! ï why not?

Å éor can you?

Å Hint: https://docs.alcf.anl.gov/theta/performance-tools/darshan/ (for older Theta machine but still
applies to Polaris)

https://github.com/radix-io/hands-on
https://docs.alcf.anl.gov/theta/performance-tools/darshan/

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Parallel I/O and MPI

Å The stdio checkpoint routine works but is not parallel

Å One process is responsible for all I/O

Å No concurrency in I/O; single link to storage

Å Memory pressure

Å Wouldnôt want to use this approach for real

Å How can we get the full benefit of a parallel file system?

Å We first look at how parallel I/O works in MPI

Å We then implement a fully parallel checkpoint routine

Å MPI is a good setting for parallel I/O

Å Writing is like sending and reading is like receiving

Å Any parallel I/O system will need:

Å collective operations

Å user-defined datatypes to describe both memory and file layout

Å communicators to separate application-level message passing from I/O-related message passing

Å non-blocking operations

Å i.e., lots of MPI-like machinery

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Simple MPI-IO

ÅCollective open: all processes in communicator

ÅFile-side data layout with file views

ÅMemory-side data layout with MPI datatype passed to write

MPI_File_open (COMM, name, mode,
 info, fh);
MPI_File_set_view (fh , disp , etype ,
 filetype , datarep , info);
MPI_File_write_all (fh , buf , count,
 datatype, status);

MPI_File_open (COMM, name, mode,
 info, fh);
MPI_File_set_view (fh , disp , etype ,
 filetype , datarep , info);
MPI_File_write_all (fh , buf , count,
 datatype, status);

disp

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Collective I/O

Å A critical optimization in parallel I/O

Å All processes (in the communicator) must call the collective
I/O function

ÅAllows communication of ñbig pictureò to file system

Å Framework for I/O transformations/optimizations at the MPI-IO layer

Å e.g., two-phase I/O

Small individual

requests
Large collective

access

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Collective MPI I/O Functions

Å Not going to go through the MPI-IO API in excruciating detail

Å Happy to discuss in slack, chat, email

Å MPI_File_write_at_all, etc.

Å _all indicates that all processes in the group specified by the communicator passed to MPI_File_open will call this
function

Å _at indicates that the position in the file is specified as part of the call; this provides thread-safety and clearer code
than using a separate ñseekò call

Å Each process specifies only its own access information

Å the argument list is the same as for the non-collective functions

Å OK to participate with zero data

Å All processes must call a collective

Å Process providing zero data might participate behind the scenes anyway

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

HANDS-ON: writing with MPI-IO

ÅLetôs take ñI/O from masterò example and make it parallel

Å Use MPI_File_open instead of open

Å Only one process needs to write header

Å Independent MPI_File_write

Å Could combine, but header I/O small and checkpoint (typically) vastly larger

ÅEvery process sets a ñfile viewò

Å Need to skip over header ï file view has an ñoffsetò field just for this case

Å The ñfile viewò here is not complicated: we are operating on integers, not bytes:

Å MPI_File_set_view (fh , sizeof (header), MPI_INT,

MPI_INT, "native" , info));

Å Each process writes one slice/row of array

Å MPI_File_write_at_all

Å Offset: ñrank*XDIM*YDIMò ï no ósizeofô: specified ints in file view

Å ñ(bufer, count, datatype)ò tuple: (values, XDIM*YDIM, MPI_INT)

xdim

y
d
im

ra
n
k
 0

 1
 2

 3
 4

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Solution fragments for Hands-On 5

if (rank == 0) {

 MPI_CHECK(MPI_File_write (fh ,

 &header, sizeof (header), MPI_BYTE,

 MPI_STATUS_IGNORE));

}

MPI_File_write_at_all (fh , rank*XDIM*YDIM,

 values, XDIM*YDIM, MPI_INT,

 MPI_STATUS_IGNORE));

Header I/O from rank 0:

Collective I/O from all ranks

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Hands-on continued: Darshan

ÅLetôs use Darshan

Å Find Darshan log file, but donôt generate report right away

ÅWhat do you think the report will say?

Å OK, now generate the report. Were you surprised?

Å Counts of POSIX calls vs MPI-IO calls

Å Sizes of POSIX calls vs sizes of MPI-IO calls

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Managing Concurrent Access

Å Files are treated like global shared memory regions. Locks are used to manage concurrent
access:

ÅFiles are broken up into lock units
Å Unit boundaries are dictated by the storage system, regardless of access pattern

ÅClients obtain locks on units that they will access before I/O occurs

ÅEnables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

ÅLocks are reclaimed from clients when others desire access

If an access touches any data in a

lock unit, the lock for that region

must be obtained before access

occurs.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Implications of Locking in Concurrent Access

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

I/O Transformations

Å Software between the application and the file system performs transformations, primarily to
improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

ÁGoals of transformations:
ï Reduce number of operations to PFS

(avoiding latency)

ï Avoid lock contention

(increasing level of concurrency)

ï Hide number of clients

(more on this later)

ÁWith ñtransparentò transformations,

data ends up in the same locations

in the file as it would have been

normally
ï i.e., the file system is still aware of the

actual data organization

ÁI/O libraries do these for you already

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Reducing Number of Operations

Å Because most operations go over multiple networks, I/O to a PFS incurs more latency than with
a local FS. Data sieving is a technique to address I/O latency by combining operations:

ÅWhen reading, application process reads a large region holding all needed data and pulls out what is
needed

ÅWhen writing, three steps required (below)

Å Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be modified

are read into intermediate buffer (1

read).

Step 2: Elements to be written to file

are replaced in intermediate buffer.

Step 3 : Entire region is written back to

storage with a single write operation.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Data Sieving in Practice

Naiive Data Sieving

MPI-IO writes 192 192

MPI-IO Reads 0 0

Posix Writes 192000 192000

Posix Reads 0 192015

MPI-IO bytes written 1 920 000 000 1 920 000 000

MPI-IO bytes read 0 0

Posix bytes read 0 100 039 006 128

Posix bytes written 1 920 000 000 100 564 552 704

Not always a win, particularly for writing:
Å Enabling data sieving instead made writes slower: why?

Å Locking to prevent false sharing (not needed for reads)
Å Multiple processes per node writing simultaneously
Å Internal ROMIO buffer too small, resulting in write amplification [1]

[1]

Selected Darshan statistics

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Data Sieving: time line

Top: MPI I/O call
describing
noncontiguous
regions

Independent: no
coordination
possible. Each
process does its
own data
sieving. Gaps

between
operations
show lock
acquisition.

One MPI I/O
call (top) turns
into many
POSIX
operations
(below)

https://github.com/hpc-io/dxt-explorer Interactive log analysis tool by Jean Luca Bez

https://github.com/radix-io/hands-on
https://github.com/hpc-io/dxt-explorer

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Avoiding Lock Contention

ÅWe can reorder data among processes to avoid lock contention. Two-phase I/O splits I/O into a
data reorganization phase and an interaction with the storage system (two-phase write depicted):

Å Data exchanged between processes to match file layout

Å 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes based

on organization of data in file.

Phase 2: Data are written to file (storage servers) with

large writes, no contention.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Two-Phase I/O Algorithms
(or, You donôt want to do this yourselfé)

For more information, see W.K. Liao and

A. Choudhary, òDynamically Adapting File

Domain Partitioning Methods for

Collective

I/O Based on Underlying Parallel File

System Locking Protocols,ó SC2008,

November, 2008.

Todayôs systems also
choose aggregators
that are ñbestò for
storage

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govcode etc: https://github.com/radix-io/hands-on

Two-phase I/O in Practice

Naiive Data Sieving Two-phase

MPI-IO writes 192 192 192

MPI-IO Reads 0 0 0

Posix Writes 192000 192000 1832

Posix Reads 0 192015 0

MPI-IO bytes written 1 920 000 000 1 920 000 000 1 920 000 000

MPI-IO bytes read 0 0 0

Posix bytes read 0 100 039 006 128 0

Posix bytes written 1 920 000 000 100 564 552 704 1 920 000 000

Å Consistent performance independent of access pattern
Å Note re-scaled y axis [1]

Å No write amplification, no read-modify-write
Å Some network communication but networks are fast
ÅRequires ñtemporal localityò -- not great if writes ñskewedò, imbalanced, or some process enter collective late.
Å(Yes, those are some ñimpressiveò error barsé)

[2]

[1]

Selected Darshan statistics

https://github.com/radix-io/hands-on

